Fork me on GitHub

数据结构之平衡二叉树与AVL树

平衡二叉树

由于二分搜索树顺序创建一个树时,会退化成链表,大大降低的效率,我们引出平衡二叉树——AVL树,G.M.Adelson-Velsky和E.M.Landis ,AVL,最早的自平衡二分搜索树结构。

平衡二叉树特点
  • 对于任意一个节点,左子树和右子树的高度查不能为超过1
  • 平衡二叉树的高度和节点数量之间的关系也是O(logn)的
  • 节点高度
  • 平衡因子

AVL树的增删
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
package AVL;

import java.lang.reflect.Array;
import java.util.ArrayList;

/**
* @author zqnh
* @date 2019/8/4 on 10:44.
*/
public class AVLTree<K extends Comparable<K>,V>
{
private class Node
{
public K key;
public V value;
public Node left,right;
public int height;
public Node(K key,V value)
{
this.key=key;
this.value = value;
left=null;
right=null;
height=1;
}
}

private Node root;
private int size;
public AVLTree()
{
root=null;
size=0;
}
//获得节点node的高度
private int getHeight(Node node)
{
if(node == null)
return 0;
return node.height;
}

//获得节点node的平衡因子
private int getBalanceFactor(Node node)
{
if(node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
//对节点进行右旋操作,返回旋转后新的根结点x
// y x
// / \ / \
// x 向右旋转(y) z y
// / \ ----------------> / \ / \
// z T3 T1 T2 T3 T3
// / \
// T1 T2
private Node rightRotate(Node y)
{
Node x = y.left;
Node T3 = x.right;

//向右旋转
x.right = y;
y.left = T3;

//更新height
y.height = Math.max(getHeight(y.left),getHeight((y.right)) + 1 );
x.height = Math.max(getHeight(x.left),getHeight((x.right)) + 1 );

return x;
}
//对节点y进行左旋转操作,返回旋转后新的根结点x
// y X
// / \ / \
// T1 x 向左旋转(y) Y z
// / \ -----------------------> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y)
{
Node x = y.right;
Node T2 = x.left;

//向左旋转
x.left = y;
y.right = T2;

//更新height
y.height = Math.max(getHeight(y.left),getHeight((y.right)) + 1 );
x.height = Math.max(getHeight(x.left),getHeight((x.right)) + 1 );

return x;
}


public void add(K key, V value)
{
root = add(root, key,value);
}
private Node add(Node node,K key,V value)
{
if(node == null)
{
size++;
return new Node(key,value);
}
if(key.compareTo(node.key)<0)

node.left = add(node.left,key,value);
else if (key.compareTo(node.key) > 0 )
node.right = add(node.right,key,value);
else
node.value = value;
//更新height
node.height = 1+Math.max(getHeight(node.left),getHeight(node.right));
//计算平衡因子
int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor)>1) System.out.println(balanceFactor);
//平衡维护
//LL
if(balanceFactor>1&&getBalanceFactor(node.left)>=0)
return rightRotate(node);
//RR
if(balanceFactor<-1&& getBalanceFactor(node.right)<=0)
return leftRotate(node);
//LR
if(balanceFactor>1&&getBalanceFactor(node.left)<0)
{
node.left = leftRotate(node.left);//转化为LL型
return rightRotate(node);
}
//RL
if(balanceFactor<-1&&getBalanceFactor(node.right)>0)
{
node.right = rightRotate(node.right);//转化为LL型
return leftRotate(node);
}
return node;
}


public V remove(K key)
{
Node node = getNode(root,key);
if(node!=null)
{
root = remove(root,key);
return node.value;
}
return null;
}
//删除掉以node为根的二分搜索树中键为key的结点,递归算法
//返回删除结点后新的二分搜索树的根
private Node remove(Node node, K key)
{
if(node == null)
return null;
Node retNode;
if(key.compareTo(node.key)<0)
{
node.left = remove(node.left,key);
retNode = node;
}
else if(key.compareTo(node.key)>0)
{
node.right = remove(node.right,key);
retNode = node;
}
else
{//e == node.e
//待删除结点左子树为空的情况
if(node.left == null)
{
Node rightNode = node.right;
node.right = null;
size--;
retNode = rightNode;
}
//待删除结点右子树为空的情况
else if(node.right == null)
{
Node leftNode = node.left;
node.left = null;
size--;
retNode = leftNode;
}
else
{ //待删除结点左右子树均不为空的情况
//找到比待删除结点大的最小结点,即待删除结点右子树的最小结点
//用这个结点顶替待删除结点的位置
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;

node.left = node.right = null;

retNode = successor;
}
}

if(retNode == null)
return null;
//更新height
retNode.height = 1+Math.max(getHeight(retNode.left),getHeight(retNode.right));
//计算平衡因子
int balanceFactor = getBalanceFactor(retNode);
if(Math.abs(balanceFactor)>1) System.out.println(balanceFactor);
//平衡维护
//LL
if(balanceFactor>1&&getBalanceFactor(retNode.left)>=0)
return rightRotate(retNode);
//RR
if(balanceFactor<-1&& getBalanceFactor(retNode.right)<=0)
return leftRotate(retNode);
//LR
if(balanceFactor>1&&getBalanceFactor(retNode.left)<0)
{
retNode.left = leftRotate(retNode.left);//转化为LL型
return rightRotate(retNode);
}
//RL
if(balanceFactor<-1&&getBalanceFactor(retNode.right)>0)
{
retNode.right = rightRotate(retNode.right);//转化为LL型
return leftRotate(retNode);
}
return retNode;
}
private Node minimum(Node node)
{
if(node.left == null)
return node;
return minimum(node.left);
}

public boolean contains(K key)
{
return getNode(root,key)!=null;
}


public V get(K key)
{
Node node = getNode(root,key);
return node == null?null:node.value;
}


public void set(K key, V newValue)
{
Node node = getNode(root,key);
if(node == null)
throw new IllegalArgumentException(key+"doesn't exist");
node.value= newValue;
}

public int getSize()
{
return size;
}


public boolean isEmpty()
{
return size==0;
}

//判断该二叉树是否是一棵二分搜索树
public boolean isBST()
{
ArrayList<K> keys = new ArrayList<>();
inOrder(root,keys);
for (int i = 0; i < keys.size(); i++) {
if(keys.get(i-1).compareTo(keys.get(i))>0)
return false;

}return true;
}
//判断该二叉树是否是一颗平衡二叉树
public boolean isBalanced()
{
return isBalanced(root);
}
private boolean isBalanced(Node node)
{
if(node ==null)
return true;
int balanceFactor = getBalanceFactor(node);

if(Math.abs(balanceFactor)>1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}

private void inOrder(Node node, ArrayList<K> keys)
{
if(node == null )
return;
inOrder(node.left,keys);
keys.add(node.key);
inOrder(node.right,keys);
}
private Node getNode(Node node,K key)
{
if(node == null)
return null;
if(key.compareTo(node.key) == 0)
return node;
else if(key.compareTo(node.key)<0)
return getNode(node.left,key);
else
return getNode(node.right,key);
}
}
AVL树的左旋和右旋
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//对节点进行右旋操作,返回旋转后新的根结点x
// y x
// / \ / \
// x 向右旋转(y) z y
// / \ ----------------> / \ / \
// z T3 T1 T2 T3 T3
// / \
// T1 T2
private Node rightRotate(Node y)
{
Node x = y.right;
Node T3 = x.right;
//向右旋转
x.right = y;
y.left = T3;

//更新height
y.height = Math.max(getHeight(y.left),getHeight((y.right)) + 1 );
x.height = Math.max(getHeight(x.left),getHeight((x.right)) + 1 );

return x;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//对节点y进行左旋转操作,返回旋转后新的根结点x
// y X
// / \ / \
// T1 x 向左旋转(y) Y z
// / \ -----------------------> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y)
{
Node x = y.right;
Node T2 = x.left;

//向左旋转
x.left = y;
y.right = T2;

//更新height
y.height = Math.max(getHeight(y.left),getHeight((y.right)) + 1 );
x.height = Math.max(getHeight(x.left),getHeight((x.right)) + 1 );

return x;
}
LL RR LR RL

左左型,右右型,左右型,右左型

LR

然后再对树进行右旋


RL

对x进行右旋转

成为RR情况,对y进行左旋转


基于AVL树的集合和映射

AVLMap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
package map;

/**
* @author zqnh
* @date 2019/8/5 on 20:51.
*/
public class AVLMap<K extends Comparable<K>,V> implements Map<K,V>
{
private AVLTree<K,V> avl;
public AVLMap()
{
avl = new AVLTree<>();
}
@Override
public void add(K key, V value)
{
avl.add(key, value);
}
@Override
public V remove(K key)
{
return null;
}
@Override
public boolean contains(K key)
{
return avl.contains(key);
}
@Override
public V get(K key)
{
return avl.get(key);
}
@Override
public void set(K key, V newValue)
{
avl.set(key,newValue);
}
@Override
public int getSize()
{
return avl.getSize();
}
@Override
public boolean isEmpty()
{
return avl.isEmpty();
}
}

AVLSet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
package trie;

import AVL.AVLTree;

/**
* @author zqnh
* @date 2019/8/5 on 21:00.
*/
public class AVLSet<E extends Comparable<E>> implements Set<E>
{
private AVLTree<E,Object> avl;
public AVLSet()
{
avl = new AVLTree<>();
}

@Override
public void add(E e)
{
avl.add(e,null);
}

@Override
public void remove(E e)
{
avl.remove(e);
}

@Override
public boolean contains(E e)
{
return avl.contains(e);
}

@Override
public int getSize()
{
return avl.getSize();
}

@Override
public boolean isEmpty()
{
return avl.isEmpty();
}
}